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1. Introduction

Strings, being extended, require a generalisation of the geometry of spacetime that goes

beyond the conventional notion. This is at the heart of novel and beautiful ideas such

as mirror symmetry. More recently there has been a lot of advances in understanding

the motion of a string in the ‘compact’ internal space with various fluxes that are possi-

ble in string theory. This has prompted the investigation of an appropriate geometrical

framework. One such idea is that of the generalised complex geometry introduced by

Hitchin [1, 2] and developed further by Gualtieri [3], in which both the tangent as well

as the cotangent spaces of the manifold are considered together. As a matter of fact,

this occurs naturally in string theory when there is a magnetic flux of the Neveu-Schwarz

(NS) B-field. Demanding supersymmetry under this condition requries that the left- and

right-moving modes of the string perceive different complex (or Kähler or hyperKähler)

structures [4]–[9]. In purely geometrical terms, this turns out to be equivalent to a gener-

alised complex (or Kähler or hyperKähler) structure [3] (see also [10]). Essentially these

two descriptions are the lagrangian and hamiltonian approaches to the string sigma model.

A number of papers [11]–[26] have analysed various aspects of generalised geometry in the

context of string theory in recent times (for a recent review, see [27]).

In this short note, we will elaborate on the generalised hyperKähler structure alluded

to by Hitchin [1, 2] and discussed by others [3, 28] and mention an explicit example of a

generalised hyperkahler manifold found in string theory. In view of the comments above,

it is clear that these ought to be alternative descriptions of string backgrounds that can

be equivalently described in terms of left- and right-movers. Our example is indeed a

reformulation of the familiar Neveu-Schwarz fivebrane [29] in terms of generalised geometry.

It should also be mentioned that string theory allows for fluxes of various other fields.

In particular, there are generalised gauge form fields of all degrees from Ramond sector.
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Although some work has been done, finding a geometrical framework for diverse flux vacua

remains a challenging open problem.

In the following, we briefly recapitulate some essential aspects of generalised complex

and Kähler structures. This is then extended to generalised hyperKähler structure. We

provide an example of generalised hyperKähler geometry from string theory. In the end,

we propose possible constructions that further generalise the idea.

Note added: the paper [30], which appeared while we have been studying this problem,

has some overlap with our work. However, the focus of [30] is on the analysis of the

worldsheet sigma model and supersymmetry, while we have provided explicit examples

which satisfy these conditions.

2. Generalised complex and Kähler geometry

A generalised complex structure extends the notion of the usual complex structure to the

sum of the tangent and cotangent bundles TM⊕ T ∗M of a manifold M.

An almost generalised complex structure in an open neighbourhood of p ∈ M is a

linear map

ℑ : TM⊕ T ∗M → TM⊕ T ∗M, such that ℑ2 = −1. (2.1)

This extends to a generalised complex structure when ℑ can be defined consistently over

M leading to integrability conditions similar to the ordinary one [1, 3]. The dimension of

the manifold M must be even. Trivial examples are ordinary complex structure I, together

with its transpose on T ∗M:

ℑI =

(

I 0

0 −It

)

, (2.2)

and symplectic structure, along with its inverse:

ℑω =

(

0 −ω−1

ω 0

)

. (2.3)

In fact, a generalised complex structure is locally a product of complex and symplectic

structures [3].

A generalised Kähler structure requires two commuting generalised complex structures

ℑ1 and ℑ2, such that

ℑ1 ℑ2 = −G = −

(

0 g−1

g 0

)

, (2.4)

where G is a positive definite generalised metric1 on TM⊕T ∗M. The motivation is clearly

to extend the idea of a hermitian Kähler manifold.

This structure first appeared in the physics literature in the work of Gates et al [4],

where they analysed the requirement for additional global supersymmetry for the sigma

1In a more general situation, the generalised metric is a B-transform of the above [3], in which case one

has the B-transforms of the ℑ’s.
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model describing a string propagating in the presence of the Neveu-Schwarz B-field in a tar-

get space K. This is a necessary requirement for spacetime supersymmetry. They showed

that the general form of the additional supersymmetry variation of the (1,1) superfields Φi

for the coordinates, is of the form:

δΦi = ǫ+f i
+jD+Φj + ǫ−f i

−jD−Φj, (2.5)

where D± are the worldsheet super-covariant derivatives. The tensors f± are a pair of

almost complex structures on the target manifold K for the left- and right-movers respec-

tively; further, they have to satisfy the constraint

∇
±
i f

j
±k = ∂if

j
±k + Γj

±imfm
±k − Γm

±ikf
j
±m = 0. (2.6)

In the above Γi
±jk are the connections seen by the left- and right movers

Γi
±jk = Γi

jk ± gimHmjk, (2.7)

where Γi
jk are Levi-Civita connections derived from the metric and H = dB. This leads to

what was called a bi-hermitian geometry for K, namely distinct Kähler structures for the

left- and right-movers. Gualtieri [3] has shown that the bi-hermitian geometry of [4] can

equivalently be written as a generalised Kähler geometry.

3. Generalised hyperKähler geometry: strings in a hyperKähler manifold

with H-flux

A generalised hyperKähler structure naturally carries the idea of a generalised Kähler

structure one step further and requires six generalised complex structures ℑ±
a , (a = 1, 2, 3).

Recall that an ordinary hyperKähler structure has three complex structures Ia (a = 1, 2, 3)

transforming as an SU(2) triplet and three compatible symplectic structures ωa = gIa. The

ℑ±
a ’s satisfy the following algebra that can be motivated from the hyperKähler case:

ℑ
+
a ℑ

+

b = −δab + ǫabcℑ
+
c ,

ℑ
−
a ℑ

−
b = −δab + ǫabcℑ

+
c ,

ℑ
+
a ℑ

−
b = −δabG + ǫabcℑ

−
c ,

ℑ
−
a ℑ

+
b = −δabG + ǫabcℑ

−
c , (3.1)

where, ǫabc is a totally antisymmetric symbol and G is as in eq. (2.4).

As we have seen above, for a string moving in a manifold with the metric g in the

presence of a H-flux, there is a torsion term that modifies the connection for the left- and

right-movers. In case of (4,4) supersymmetry on the worldsheet, there are three complex

structures f±
a (a = 1, 2, 3) in each sector. The generalised hyperKähler structure is obtained

straightforwardly by following from the prescription of ref. [3]:

ℑ
+
a =

(

1
2
(f+

a + f−
a ) 1

2
(f+

a − f−
a ) g−1

1
2
g (f+

a − f−
a ) −1

2

(

f t+
a + f t−

a

)

)

,

ℑ
−
a =

(

1
2
(f+

a − f−
a ) 1

2
(f+

a + f−
a ) g−1

1

2
g (f+

a + f−
a ) −1

2

(

f t+
a − f t−

a

)

)

, (3.2)
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where f t±
a denote the transpose of f±

a . It is easy to see that these satisfy the algebra (3.1).

4. Generalised hyperKähler geometry of the NS5-brane

We will show that the Neveu-Schwarz 5-brane solution found in ref. [29] provides an example

of generalised hyperKähler geometry. The NS5-brane was given as a soliton solution in

the supergravity approximation, however, at the same time a worldsheet conformal field

theory description established it as an exact solution of string theory. Suppose the NS5-

brane extends along the coordinates (x1 · · · x5). The space labelled by (x6 · · · x9) is the

transverse space K. In the supergravity approximation, the metric g of K is such that

in the near horizon limit the geometry is that of a cylinder with an S3 base. There is an

H-flux through the S3 and also a linear dilaton along the length of the cylinder. Explicitly,

the background is given by:

gij = e2φδij , i, j . . . = 6, · · · , 9,

Hijk = −ǫijk
m∂mφ, (4.1)

∇
2e2φ = 0, (4.2)

where φ is the dilaton field. It was also shown that there is an exact (4,4) superconformal

field theory on the worldsheet, for details see [29].

As mentioned earlier, the torsion term modifies the connection. Therefore, the left-

and right-movers perceive different hyperKähler structures as follows [29]:

f+
1 =

(

iσ2 0

0 −iσ2

)

, f−
1 =

(

−iσ2 0

0 −iσ2

)

,

f+
2 =

(

0 1

−1 0

)

, f−
2 =

(

0 −σ3

σ3 0

)

,

f+
3 =

(

0 iσ2

iσ2 0

)

, f−
3 =

(

0 −σ1

σ1 0

)

.

(4.3)

The above, which are an extension of [4] to the hyperKähler case, may be called a

bi-hyperKähler structure. The generalised hyperKähler structure is then given by the

eq. (3.2). Clearly, these satisfy the algebra (3.1). Thus we see that the (transverse space)

of the NS5-brane of ref. [29] is a natural example of generalised hyperKähler manifold.

It should be possible to find other examples of generalised hyperKähler geometries,

which are solutions to the string equations of motion.

5. Further generalisation

Finally, we would like to propose a construction for a compact ‘generalised hyperKähler

manifold’. In going from one ‘coordinate chart’ to another, we will now allow for S-duality

transformations in addition to T -duality used in generalised geometry.
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Consider type IIB string theory. There are two different 2-form fields BNS and BR

originating in the NS-NS and RR sectors respectively. There is also an SL(2,Z) duality

symmetry under which these transform as a doublet. If we combine any of the SL(2,Z)

transform of the B-fields with the metric, it will be seen as a generalised complex structure

by a suitable SL(2,Z) transform of the fundamental string. Let us start with an elliptically

fibred K3 manifold. Now turn on an appropriate SL(2,Z) transform of the B-fields follow-

ing the monodromy of the torus fibre, so that these are consistent globally over the entire

manifold. The singularities around which there are monodromies, correspond to different

(p, q)-5-branes, which are patched together so that the transverse space is a compact ‘gen-

eralised hyperKähler manifold’. This construction, if it can be made globally consistent,

can also be extended to other dimensions to obtain, for example, generalised Calabi-Yau

manifolds.

The above proposal is, therefore, in the spirit of F-theory, U-manifold [32, 33] and

‘generalised geometry’ as proposed by Hull [34, 35].
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